
NI MATRIXx TM

XmathTM Robust Control Module

MATRIXx Xmath Robust Control Module

April 2007
370757C-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 662 457990-0, Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599,
Canada 800 433 3488, China 86 21 5050 9800, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00,
Finland 385 (0) 9 725 72511, France 33 (0) 1 48 14 24 24, Germany 49 89 7413130, India 91 80 41190000,
Israel 972 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400,
Lebanon 961 (0) 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 (0) 348 433 466,
New Zealand 0800 553 322, Norway 47 (0) 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210,
Russia 7 495 783 6851, Singapore 1800 226 5886, Slovenia 386 3 425 42 00, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 (0) 8 587 895 00, Switzerland 41 56 2005151, Taiwan 886 02 2377 2222,
Thailand 662 278 6777, Turkey 90 212 279 3031, United Kingdom 44 (0) 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on National Instruments documentation, refer to the National Instruments Web site at ni.com/info and enter
the info code feedback.

© 2007 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any
equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by
warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In
the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document
without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING
FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of
the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against
National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service
failures caused by owner’s failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification of the
product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other
intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only
to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

Trademarks
MATRIXx™, National Instruments™, NI™, ni.com™, and Xmath™ are trademarks of National Instruments Corporation. Refer to the Terms of
Use section on ni.com/legal for more information about National Instruments trademarks.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency,
partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.
(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE
COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES,
TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR
ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF
HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY
UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH,
THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES,
INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS
CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION
DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY
RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER
NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT
LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Conventions

The following conventions are used in this manual:

[] Square brackets enclose optional items—for example, [response].

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross-reference, or an introduction
to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

© National Instruments Corporation v MATRIXx Xmath Robust Control Module

Contents

Chapter 1
Introduction

Using This Manual...1-1
Document Organization...1-1
Bibliographic References ..1-2
Commonly-Used Nomenclature..1-2
Related Publications ..1-2
MATRIXx Help...1-3

Overview..1-3

Chapter 2
Robustness Analysis

Modeling Uncertain Systems...2-1
Stability Margin (smargin)...2-3

smargin()...2-4
Worst-Case Performance Degradation (wcbode) ..2-8

wcbode() ...2-9
Advanced Topics ...2-10

Stability Margin...2-10
Stability Margin and Structured Singular Values (µ)2-10
Stability Margin Bounds Using Singular Values..............................2-11
Approximation with Scaled Singular Values....................................2-12

ssv() ..2-15
osscale()..2-16
pfscale() ..2-16
optscale() ..2-17

Reducibility..2-17
Worst-Case Performance Degradation (wcgain) ...2-18

Conversion to a Stability Margin Problem..2-18
wcgain()..2-19

Contents

MATRIXx Xmath Robust Control Module vi ni.com

Chapter 3
System Evaluation

Singular Value Bode Plots... 3-1
L Infinity Norm (linfnorm).. 3-3

linfnorm() ... 3-4
Singular Value Bode Plots of Subsystems .. 3-7

perfplots()... 3-7
clsys() ... 3-10

Chapter 4
Controller Synthesis

H-Infinity Control Synthesis ... 4-1
Problem Definition.. 4-1
Extended Transfer Matrix ... 4-2
Building the Plant Model .. 4-3
Weight Selection ... 4-5
Restrictions on the Extended Plant ... 4-7
hinfcontr() .. 4-8
singriccati() .. 4-13

Linear-Quadratic-Gaussian Control Synthesis .. 4-14
LQG Frequency Shaping .. 4-14
fsregu() ... 4-14
fsesti()... 4-16
fslqgcomp() .. 4-17
Frequency-Shaped Control Design Commands.. 4-17

Loop Transfer Recovery (lqgltr) ... 4-22
lqgltr() .. 4-23

Appendix A
Bibliography

Appendix B
Technical Support and Professional Services

Index

© National Instruments Corporation 1-1 MATRIXx Xmath Robust Control Module

1
Introduction

The Xmath Robust Control Module (RCM) provides a collection of
analysis and synthesis tools that assist in the design of robust control
systems.

This chapter starts with an outline of the manual and some use notes. It
continues with an overview of the Xmath Robust Control Module (RCM)
functions.

Using This Manual
This manual provides complete documentation for all the RCM functions
along with their associated theoretical background, references, and
examples.

Document Organization
This manual includes the following chapters:

• Chapter 1, Introduction, describes the Robust Control Module (RCM)
and shows the RCM function structure.

• Chapter 2, Robustness Analysis, covers the robustness analysis
tools and introduces the concepts of uncertainty, robustness, and
performance degradation in the framework of closed-loop systems.
The Modeling Uncertain Systems section should be read by all those
interested in robustness analysis or performance degradation, which
are explained in the Stability Margin (smargin) section and the
Worst-Case Performance Degradation (wcbode) section. The
Advanced Topics section provides additional information but this
material is not prerequisite to the use of RCM functions.

• Chapter 3, System Evaluation, describes system analysis functions that
create singular value Bode plots, performance plots, and calculate the
L∞ norm of a linear system. This chapter should be of interest to all
users.

• Chapter 4, Controller Synthesis, discusses synthesis tools in two
categories, H∞ and H2. This manual does not attempt to explain all
of the theory of H∞, LQG/LTR, and frequency shaped LQG design

Chapter 1 Introduction

MATRIXx Xmath Robust Control Module 1-2 ni.com

techniques. The general problem setup is explained together with
known limitations; the rest is left to the references.

Bibliographic References
Throughout this document, bibliographic references are cited with
bracketed entries. For example, a reference to [DoS81] corresponds
to a document published by Doyle and Stein in 1981. For a table of
bibliographic references, refer to Appendix A, Bibliography.

Commonly-Used Nomenclature
This manual uses the following general nomenclature:

• Matrix variables are generally denoted with capital letters; vectors are
represented in lowercase.

• G(s) is used to denote a transfer function of a system where s is the
Laplace variable. G(q) is used when both continuous and discrete
systems are allowed.

• H(s) is used to denote the frequency response, over some range of
frequencies of a system where s is the Laplace variable. H(q) is used to
indicate that the system can be continuous or discrete.

• A single apostrophe following a matrix variable, for example, x',
denotes the transpose of that variable. An asterisk following a matrix
variable (for example, A*) indicates the complex conjugate, or
Hermitian, transpose of that variable.

Related Publications
For a complete list of MATRIXx publications, refer to Chapter 2,
MATRIXx Publications, Help, and Online Support, of the MATRIXx
Getting Started Guide. The following documents are particularly useful
for topics covered in this manual:

• MATRIXx Getting Started Guide

• Xmath User Guide

• Xmath Control Design Module

• Xmath Interactive Control Design Module

• Xmath Interactive System Identification Module, Part 1

• Xmath Interactive System Identification Module, Part 2

• Xmath Model Reduction Module

Chapter 1 Introduction

© National Instruments Corporation 1-3 MATRIXx Xmath Robust Control Module

• Xmath Optimization Module

• Xmath Robust Control Module

• Xmath Xμ Module

MATRIXx Help
Robust Control Module function reference information is available in the
MATRIXx Help. The MATRIXx Help includes all Robust Control functions.
Each topic explains a function’s inputs, outputs, and keywords in detail.
Refer to Chapter 2, MATRIXx Publications, Help, and Online Support, of
the MATRIXx Getting Started Guide for complete instructions on using the
Help feature.

Overview
RCM functionality is structured as shown in Figure 1-1.

Chapter 1 Introduction

MATRIXx Xmath Robust Control Module 1-4 ni.com

Figure 1-1. RCM Function Structure

Many RCM functions are based on state-of-the-art algorithms implemented
in cooperation with researchers at Stanford University. The robustness
analysis functions are based on structured singular value calculations.
The synthesis tools expand on existing LQG (H2) techniques (LQG/LTR
and frequency shaping) while adding new H∞ design functions.

perfplotslinfnorm

Utility Functions

Synthesis Functions

lqgltr fslqgcomp
fsesti
fsregu

singriccati clsys

hinfcontr

Analysis Functions

smargin wcbode

wcgain

ssv

pfscale optscale osscale

© National Instruments Corporation 2-1 MATRIXx Xmath Robust Control Module

2
Robustness Analysis

This chapter describes RCM tools used for analyzing the robustness
of a closed-loop system. The chapter assumes that a controller has been
designed for a nominal plant and that the closed-loop performance of
this nominal system is acceptable. The goal of robustness analysis is to
determine whether the performance will remain acceptable if the plant
differs from the nominal plant.

Modeling Uncertain Systems
This section describes the method RCM uses to model an uncertain system.
The closed-loop system is modeled as a known or nominal closed-loop
system with input w and output z, together with k unknown or uncertain
transfer functions δ1(jω), …, δk(jω), as shown in Figure 2-1.

Figure 2-1. Model of an Uncertain System

The following transfer functions are assumed to be stable:

(2-1)

where the li are given non-negative functions of frequency. This type of
uncertainty model is known as structured nonparametric uncertainties.
To describe this model, you also must describe the nominal closed-loop

Uncertain Transfer Function

Known Nominal
System

w z

q1 r1
δ1

q2 r2
δ2

δi jω() li jω()≤

Chapter 2 Robustness Analysis

MATRIXx Xmath Robust Control Module 2-2 ni.com

system, including how the uncertain transfer functions are connected to the
system and the magnitude bound functions li(w).

To do this, extract the uncertain transfer functions and collect them into a
k-input, k-output transfer matrix Δ, where:

(2-2)

The resulting closed-loop system can be viewed as a feedback connection
of the nominal closed-loop system with transfer matrix H(jω) and the
uncertain transfer matrix Δ(jω). You describe your nominal closed-loop
system as a linear system with

input and output .

Note The signals r and q are not really inputs and outputs of the nominal system; r and q
show how the uncertain transfer functions connect to your nominal system. The signals r
and q each have k components.

You will partition H into the four submatrices,

so that Hzw is the nominal transfer matrix from w to z, Hzr is the nominal
transfer matrix from r to z, Hqw is the nominal transfer matrix from w to q,
and Hqr is the nominal transfer matrix from r to q.

The magnitude bound functions li(jω) from Equation 2-1 are described
with the PDM delb:

Thus, a complete description of your system requires the system SysH
to represent Hjw and the response delb to represent the bounds.

Δ jω() diagonal δ1 jω(),...,δk jω()()=

w
r

z
q

H Hzw Hzr

Hqw Hqr

=

DELB
ω1
:

ωm

l1 ω1() … lk ω1()
: :

l1 ωm() … lk ωm()

,=

Chapter 2 Robustness Analysis

© National Instruments Corporation 2-3 MATRIXx Xmath Robust Control Module

Stability Margin (smargin)
Assume that the nominal closed-loop system is stable. That belief raises a
question: Does the system remain stable for all possible uncertain transfer
functions that satisfy the magnitude bounds (Equation 2-1)? If so, the
system is said to be robustly stable. If the magnitude bounds are small
enough, the uncertainties will not destabilize the system; your system will
be robustly stable.

Roughly speaking, the stability margin of your system is defined as the
factor by which you can increase all the magnitude bounds li and still
maintain stability for all possible uncertain transfer functions δi. If this
number is larger than one (0 dB), then you know that there are no uncertain
transfer functions that satisfy the magnitude bound and destabilize your
system. Moreover, the number tells you how much more uncertainty your
system could tolerate than the given bounds li(ω). If the margin is less than
one, then there are uncertain transfer functions that satisfy the magnitude
bound (Equation 2-1) and result in an unstable system. In this case, the
margin tells you how much you must reduce the magnitude bounds before
you have robust stability.

More precisely, the stability margin at frequency ω is defined as the
smallest α such that the system can have a pole at jω, with the uncertain
transfer functions satisfying |δi(jω)| ≤ αli(ω):

margin(w) = min{ α| systems can have a pole at jω with magnitude bounds αli(jω) }

The stability margin also can be expressed as:

margin(w) = min{ α| det I – HqrjωΔ ≠ 0 such that |Δii| ≤ αli(α) }

Note The stability margin only depends on Hqr.

The margin often is expressed in dB. If the margin is greater than zero for
all frequencies, then your system is robustly stable. If the margin is less
than zero for some frequencies, then your system is not robustly stable.
In particular, there are uncertain transfer functions that satisfy the
magnitude bound (Equation 2-1) and cause the system to have a pole at
those frequencies where the margin is negative. This does not mean that any
δi values that satisfy the magnitude bound will destabilize the system: it
means that there are some bad δi values that satisfy the magnitude bounds
and destabilize the system.

Chapter 2 Robustness Analysis

MATRIXx Xmath Robust Control Module 2-4 ni.com

smargin()
marg = smargin(SysH, delb {scaling, graph})

The smargin() function plots an approximation to the stability margin
of the system as a function of frequency. For a full discussion of
smargin() syntax, refer to the MATRIXx Help. The approximation is
exact if the number of uncertain transfer functions is less than four and
scaling="OPT" (optimum scaling).

In other cases, the approximation is generally considered to be extremely
good. Refer to the Approximation with Scaled Singular Values section. The
approximation is always conservative. smargin() always will report a
margin that is less than or equal to the actual margin.

The smargin() function counts the columns in delb to calculate the
number of uncertainties k. It then assumes that the last k inputs of SysH are
signal r in Figure 2-2, and the last k outputs are signal q. To create a Nominal
System, refer to the Creating a Nominal System section.

Figure 2-2. Nominal Closed-Loop System

Creating a Nominal System
To better understand how to create H(s) in Figure 2-3, you will examine
a SISO tracking system with three uncertainties. δ1 is a multiplicative
actuator uncertainty, while δ2 and δ3 are multiplicative sensor uncertainties.

Known Closed-Loop System
w

r

z

qH(s)

size k size k

Chapter 2 Robustness Analysis

© National Instruments Corporation 2-5 MATRIXx Xmath Robust Control Module

Figure 2-3. SISO Tracking System with Three Uncertainties

The H system will have the reference input as input1 and the error output
as output1 (w and z, respectively, in Figure 2-2). Removing the δ values will
create inputs 2 through 4 and outputs 2 through 4 (r and q, respectively, in
Figure 2-2).

1. The A, B, C, D matrices of the state-space system representing H are
as follows:

A=[-4,-8;1,0];

B=[8,1,-4,-8;zeros(1,4)];

C=[0,-1;-4,-8;1,0;0,1];

D=[1,0,0,0;8,0,-4,-8;zeros(2,4)];

H = system(A,B,C,D,{inputNames=["reference",

"r1","r2","r3"],outputNames=["error",

"q1","q2","q3"],stateNames=["x1","x2"]});

2. Specify the uncertainty bounds.

The sensor uncertainty δ3 is known to be bounded by l3(w), according
to Equation 2-1. Because the position x2 sensor model is known to be
accurate to 10% up to one radian per second, and very inaccurate at
high frequencies, the l3 shown in Figure 2-4 is selected.

reference

reference

error

8

K1 = 4

K2 = 8

1
s

x1 x2+
1

+

+

1
+

+
2

+
+

– –

+
–

1
s

Chapter 2 Robustness Analysis

MATRIXx Xmath Robust Control Module 2-6 ni.com

Figure 2-4. Bound for Sensor Uncertainty

Note A value of l3 at one radian per second of –20 dB indicates that modeling
uncertainties of up to 10% (–20 dB = 0.1) are allowed.

The actuator and sensor uncertainties δ1 and δ2 are bounded by –20 dB
at all frequencies. You will use these values to interpolate to obtain l3.
First, create the bound for δ3 in Hz.

L3 = pdm([-20,-20,10,10],[0.1,1,30,100]/2/pi);

3. Now interpolate to obtain 30 points:

L3 = interpolate(L3,logspace(0.01,10,30),{xlog});

4. Create L1 and L2 (bounds for and):

L1=-20*ones(L3); L2 = L1;

delb = [L1,L2,L3];

5. Calculate the stability margin:

marg=smargin(H,delb);

smargin --> Scaling algorithm is type: PF

smargin --> Margin computation 10% complete

smargin --> Margin computation 50% complete

smargin --> Margin computation 90% complete

The output indicates that Perron-Frobenius scaling (the default) is
used. Refer to the Approximation with Scaled Singular Values section.

The stability margin plot is shown in Figure 2-5. The minimum margin
is about 8 dB at about 1/2 Hz. This implies that all three l1 values
(uncertainty bounds) could be increased (relaxed) simultaneously
by 8 dB, and the system would still remain robustly stable.

0.1 1 30 100

10

0

–20

Frequency, Radian/Second
dB

δ1 δ2

Chapter 2 Robustness Analysis

© National Instruments Corporation 2-7 MATRIXx Xmath Robust Control Module

Figure 2-5. Stability Margin

Now examine the effect on the stability margin of discretizing H(s) at
100 Hz.

dt = 0.01;

Hd = discretize(H,dt);

margD = smargin(Hd,delb);

smargin --> Scaling algorithm is type: PF

smargin --> Margin computation 10% complete

smargin --> Margin computation 50% complete

smargin --> Margin computation 90% complete

100 Hz is a high discretization frequency for H, so the stability margin
is unchanged in the discrete-time case. The new plot is not much
different from Figure 2-6. Again, minimum margin is about 8 dB
at about 1/2 Hz.

Chapter 2 Robustness Analysis

MATRIXx Xmath Robust Control Module 2-8 ni.com

Worst-Case Performance Degradation (wcbode)
Even if a system is robustly stable, the uncertain transfer functions still can
have a great effect on performance. Consider the transfer function from the
qth input, wq, to the pth output, zp. With δ1 = ... = ...δk = 0, you have the
nominal system, and this transfer function is the p,q entry of Hzw. This is
called the nominal transfer function.

When the δ values are not zero, the transfer function from wq to zp is the p,q
entry of Hpert given by the formula:

This is referred to as the perturbed transfer function. The perturbed transfer
function depends on the particular δ1, …, δk.

If the magnitude bounds are small enough, then you expect the perturbed
transfer function Hpert to be close to the nominal transfer function. Roughly
speaking, small perturbations should not significantly alter the closed-loop
transfer function from wq to zp.

The worst-case gain is defined as the largest magnitude of the perturbed
transfer function, considering all δ values that satisfy the magnitude bound.
More precisely:

(2-3)

wcgain(ω) is always larger than the nominal gain, |Hzw,pq(jω)|. This is not
because the uncertain transfer functions only can increase the magnitude of
the transfer function from wq to zq. In fact, it is possible that for a lucky
choice of the δ values, the perturbed transfer function actually can be
smaller than the nominal transfer function over all frequencies. But in the
worst-case gain, you consider only the worst possible δ values, and these
always increase the perturbed gain over the nominal gain.

Intuitively, if the stability margin is large, then the uncertain transfer
functions should not greatly effect the gain from wq to zp, so that wcgain(ω)
should be not much larger than the nominal gain |Hzw,pq(jω)|. If the stability
margin is small, however, wcgain(ω) could be much larger than the nominal
gain. An extreme case occurs if the stability margin is negative (in dB) at
the frequency δ. Then you have wcgain(ω) = ∞, although wcbode() clips
the worst-case gain curve so that it never exceeds (the maximum nominal
gain) * 100, or +20 dB. Of course, instability is an extreme form of
performance degradation.

Hpert Hzw HzrΔ I HqrΔ–() 1– Hqw+=

wcgain ω() max Hpert,pq Δ = diagonal δ1,...,δk() δi li ω()≤,{ }=

Chapter 2 Robustness Analysis

© National Instruments Corporation 2-9 MATRIXx Xmath Robust Control Module

wcbode()
[WCMAG, NOMMAG] = wcbode (SysH, delb, {input, output,

graph})

The wcbode() function computes and plots the worst-case gain of a
closed-loop transfer function.

This function is useful for checking a system that already has been verified
to be robustly stable using smargin(). For example, a system can have a
minimum stability margin of 4 dB, so it is robustly stable. If the worst-case
gain from a function input to the output it commands has a 20 dB peak, then
even though the system is robustly stable, the design is unacceptable. On
the other hand, if you verify that the perturbed closed-loop transfer function
increases only 2 dB over the nominal, then the design is probably
acceptable.

The wcbode() function computes and plots an approximation to
wcgain(ω), the largest possible magnitude of a perturbed closed-loop
transfer function that can be caused by uncertain transfer functions that
satisfy the magnitude bound. The wcbode() function is conservative:
it does not under-report the maximum of the perturbed transfer function.

A large value of wcbode() indicates instability: wcgain(ω) = ∞. In this
case, wcbode() returns a maximum value of ten times the maximum of
the nominal transfer function over all frequencies. Consequently, the
window is clipped at 20 dB above the maximum of the nominal transfer
function over all frequencies. The wcbode() function also plots the
nominal transfer function for reference.

Using wcbode() to Analyze Performance Degradation
The wcbode() function can be used to analyze performance degradation
for the system you have been using (Figure 2-3). The transfer function,
which should be small, is from reference to error (input 1 to output 1).
Figure 2-6 shows the results of the following function call:

[NOMMAG,WCMAG]=wcbode(H,delb,{input=1,output=1});

The performance degradation due to the uncertainties is small but not
negligible.

Chapter 2 Robustness Analysis

MATRIXx Xmath Robust Control Module 2-10 ni.com

Figure 2-6. Performance Degradation of the SISO Tracking System

Advanced Topics
This section describes the theoretical background on robustness analysis
and performance degradation.

Stability Margin
This section discusses advanced aspects of computing the stability margin
and the related scaling algorithms.

Stability Margin and Structured Singular Values (μ)
The stability margin was first defined by Safonov in [Saf82]. If you let

then you can express the margin at frequency d as

M Hqrdiagonal l1 w() ...,lk w(),()=

margin ω() max= α det I MΔ–() 0≠{

Chapter 2 Robustness Analysis

© National Instruments Corporation 2-11 MATRIXx Xmath Robust Control Module

for all diagonal Δ such that

where μ(.) is the structured singular value, introduced by Doyle in
[Doy82]. Thus, the margin is the inverse of the structured singular value of
Hqr diagonally scaled by the magnitude bounds.

There is no numerically efficient algorithm that is guaranteed to compute
μ(M), and hence the stability margin. However, it is possible to compute
various good approximations to μ(M). One of these approximations is often
exact.

Stability Margin Bounds Using Singular Values
A popular but conservative method uses singular values:

(2-4)

Plotting the right side of Equation 2-4 gives a lower bound on the
actual stability margin. To get this plot, specify smargin() with
scaling="SVD". This approximation can be very conservative, meaning
that the left side can be much larger than the right side. This fact spurred
the study of structured singular values and the other approximations
discussed in the following sections.

Use of Scaling Example
For this example, you will use the system in Figure 2-3. This time
smargin() will be invoked with scaling="SVD", so smargin()
will calculate Equation 2-4.

margSVD = smargin(H,delb,{scaling="SVD"});

smargin --> Scaling algorithm is type: SVD

smargin --> Margin computation 10% complete

smargin --> Margin computation 50% complete

smargin --> Margin computation 90% complete

Δii α≤() } 1
μ M()
-------------=

margin ω() 1
σmax M()
----------------------≥

Chapter 2 Robustness Analysis

MATRIXx Xmath Robust Control Module 2-12 ni.com

You can compare this margin to that of the example in the Creating a
Nominal System section; the following inputs produce Figure 2-7.

plot ([marg,margSVD],{xlog}

legend=["PF_SCALE","SVD"],

ylab="Stability Margin,dB",

xlab="Frequency, Hz."})

Figure 2-7. pfscale() versus svd Stability Margins

Note The singular value approach gives results that are too conservative, suggesting that
the uncertainties can destabilize the system. Conversely, you know from the scaled singular
value calculations that the system is robustly stable.

Approximation with Scaled Singular Values
In [Saf82] and [Doy82], the inequality

(2-5)

is noted. This optimization problem can be shown to be
unimodal—for D > 0, an assumption that can be made without loss

min σmax DMD 1–() μ M()≥
D diagonal

Chapter 2 Robustness Analysis

© National Instruments Corporation 2-13 MATRIXx Xmath Robust Control Module

of generality—so, roughly speaking, it can be solved. [SD83,SD84]
discusses this optimization problem.

Notice that:

so you have the following from Equation 2-5:

This inequality is thought to be nearly an equality, so that the left side is a
good engineering approximation to the right side. No theory supports this
generally held belief, but no example is known where the left side is more
than 15% larger than the right side. Equality can be shown to hold provided
k ≤ 3—for example, if there are three or fewer uncertain transfer functions
[Doy82].

Note The approximation equation of μ(M) (Equation 2-5) is an upper bound. This means
that the stability margin calculated using this approximation is conservative, that is, less
than the actual stability margin. This optimization problem itself can be difficult. Osborne
[Osb60] and Safonov [Saf82] provide two methods for finding good suboptimal scalings
for Equation 2-5.

Both Osborne’s and Safonov’s Perron-Frobenius scalings usually have
been found to be close to the optimum for the optimization problem
equation. The resulting approximations,

are thought to be good engineering approximations to μ. optscale()
provides an iterative optimization function based on the ellipsoid
algorithm.

σmax M() σ DMD 1–()= for D 1=

σmax M() μ M()≥

ûOS M() σmax DOSMDOS
1–()=

ûPF M() σmax DPFMDPF
1–()=

Chapter 2 Robustness Analysis

MATRIXx Xmath Robust Control Module 2-14 ni.com

Comparing Scaling Algorithms
Using the system from the first example (Figure 2-3), you can compare
the results of using the three scaling algorithms:

MARG_PF=smargin(H,delb,{scaling="PF",!graph});

MARG_OS=smargin(H,delb,{scaling="OS",!graph});

MARG_OPT=smargin(H,delb,{scaling="OPT",!graph});

plot ([MARG_PF,MARG_OS,MARG_OPT],{xlog,

legend=["PF","OS","OPT"],xlab="Frequency, Hz.",

ylab="Stability margin, dB"})

Figure 2-8 plots the margins produced by the three scaling algorithms.
Notice that in this problem the three scalings yield identical stability
margins.

Figure 2-8. Results of Scaling Algorithm Options

Chapter 2 Robustness Analysis

© National Instruments Corporation 2-15 MATRIXx Xmath Robust Control Module

ssv()
[v,vD] = SSV(M, {scaling})

The ssv() function computes an approximation (and guaranteed upper
bound) to the Scaled Singular Value of a complex square matrix M, where
M can be a reducible matrix. The scaled singular value v(M) is defined by:

Scaling can be accomplished with one of three algorithms:

• Perron-Frobenius—If {scaling="PF"} Safonov’s
Perron-Frobenius method [Saf82] is used. This method finds the scaled
singular value for non-negative real matrices M. In general, it is
suboptimal if M is complex. This algorithm is the default because
empirical tests show that is the fastest of the three.

• Osborne—If {scaling="OS"}, Osborne’s Method [Osb60] is used.
This method solves the problem of finding DO such that

where D is diagonal and positive, and is the Frobenius norm.
Thus, the Osborne method minimizes the Frobenius norm, and is
therefore suboptimal.

• Optimal—If {scaling="OPT"}, Boyd’s ellipsoid algorithm
[BYB89] is used. This algorithm computes the scaled singular value
to a guaranteed accuracy. It is, however, the most computationally
expensive of the three algorithms.

ssv() Examples
Consider the complex matrix M:

M = [–1, jay, 0; 0, 2*jay, 1+jay;1, 0, 1];

ssv() can return the optimally scaled singular value of M using Osborne,
Perron-Frobenius, or Boyd methods:

VOS=ssv(M,{scaling="OS"})

VOS (a scalar) = 2.56723

VPF=ssv(M,{scaling="PF"})

VPF (a scalar) = 2.45133

v M() = inf σ DMD 1–()
D C n n×∈ det D() 0 dia,≠, gonal

DOMDO
1– inf

D diagonal
DMD 1–

F

⋅ F

Chapter 2 Robustness Analysis

MATRIXx Xmath Robust Control Module 2-16 ni.com

VOPT=ssv(M,{scaling="OPT"})

VOPT (a scalar) = 2.43952

VSVD = max(svd(M))

VSVD (a scalar) = 2.65886

osscale()
[v, vD] = osscale(M)

The osscale() function scales a matrix using the Osborne Algorithm.
A diagonal scaling DOS is found that minimizes the Frobenius norm of

, which is the square root of the sum of the squares of its
singular values. If M is reducible, osscale() may encounter a divide
by zero. To avoid this, use ssv() with the Osborne scaling option:

[v,vD]=ssv(M,{scaling="OS"})

pfscale()
[v, vD] = pfscale(M)

The pfscale() function scales a matrix using the Perron-Frobenius
Algorithm. This scaling is optimal for matrices with all positive entries.
The matrix M must be irreducible for this function. If M is reducible,
use ssv() with the Perron-Frobenius scaling option instead:

[v,vD]=ssv(M,{scaling="PF"})

The optimum diagonal scaling is found for M using the Perron-Frobenius
theory of non-negative matrices. This scaling is given by

where p and q are right and left eigenvectors of | associated with its largest
eigenvalue:

DOSMDOS
1–

Di
PF pi

qi
----=

Mp λmaxp,= MTq λmaxq,= p 0 q≠ ≠

Chapter 2 Robustness Analysis

© National Instruments Corporation 2-17 MATRIXx Xmath Robust Control Module

optscale()
[v, vOPTD] = optscale (M, {tol})

The optscale() function optimally scales a matrix. An iterative
optimization (ellipsoid) algorithm which calculates upper and lower
bounds on the left side of Equation 2-5 is used. If these bounds are within
a relative accuracy you have specified (tol), optscale() stops.
optscale() also will stop and issue a warning if the maximum number
of iterations is reached:

optscale() will find a μ(M) no larger than pfscale().

Reducibility
In some cases, the uncertain transfer functions can be divided into groups
that do not interact. This is illustrated in Figure 2-9.

Figure 2-9. Non-Interacting Uncertain Transfer Functions

As you can see, δ3 does not affect the stability margin at all because there
is no feedback through it. The system in Figure 2-9 can be reduced to the
two separate systems shown in Figure 2-10. The stability margin of
Figure 2-9 is the minimum of the stability margins of the systems in
Figure 2-10.

200 rows(M)×

δ2

δ3

δ1

δ4

Chapter 2 Robustness Analysis

MATRIXx Xmath Robust Control Module 2-18 ni.com

Figure 2-10. Reduction to Separate Systems

In terms of the approximations to the margin discussed above, this
reducibility will manifest itself as a problem such as divide-by-zero or
nontermination. It really means that the minimum of the optimization
problem is not achieved by any finite scaling.

A matrix M can be split into its reducible components using the following
technique (refer to[BeP79]):

1. Form the matrix X = (αI + M) – 1 for any α larger than the spectral
radius of M, for example 2 .

2. Form Y = X + XT where Y has a positive i, j entry if and only if δi and δj
are in the same reduced system; otherwise, the entries will be zero.

ssv() checks for reducibility before invoking a scaling algorithm. The
margins of each of the reduced systems then can be calculated separately,
and the minimum taken.

Worst-Case Performance Degradation (wcgain)

Conversion to a Stability Margin Problem
In [DWS82], it is shown that a simple relation holds between the
worst-case gain defined in Equation 2-3, and the stability margin. For γ > 0,

wcgain (jw) £ g if and only if m(Hred(jw) diag(g-1,

l1(w),...,lk(w)) £ 1

where Hred is H with the rows and columns corresponding to all inputs and
outputs deleted except the ones of interest (the qth input and the pth output).
This can be interpreted as adding a fictitious uncertain transfer function
from wq to zp with magnitude bound γ–1 at the given frequency. This
additional uncertainty is called a performance loop as described in
reference [BoB91].

δ4

δ2

δ1

M

Chapter 2 Robustness Analysis

© National Instruments Corporation 2-19 MATRIXx Xmath Robust Control Module

Using this relation and any of the previously discussed approximations for
μ(.), you can compute an approximation to wcgain(). Because the
approximations to μ(.) are upper bounds, the resulting approximations to
wcgain() also are upper bounds. For speed purposes, wcgain() uses
Perron-Frobenius scaling to calculate the approximation of μ.

wcgain()
gamma = wcgain(H, gammin, gammax, gam0)

The wcgain() function estimates the largest possible magnitude from
a given input of the system to a given output, when the other inputs are
connected to the other outputs through uncertain transfer functions
bounded by one.

For a discussion of wcgain() syntax, refer to the Xmath Help. This is a
low-level function that calculates the worst-case gain at a single frequency,
where the magnitude bounds are normalized to one as follows:

Because it is a lower level function, there is no syntax checking. This
function is called by the wcbode() function.

l1 … lk 1= = =

© National Instruments Corporation 3-1 MATRIXx Xmath Robust Control Module

3
System Evaluation

This chapter describes system analysis functions that create singular value
Bode plots, performance plots, and calculate the L∞ norm of a linear
system.

Singular Value Bode Plots
The singular value Bode plot is a MIMO generalization of the bode()
magnitude plot. It is calculated as

where

and

In these equations, σi(H(jw)) can be thought of as the maximum gain of the
system at frequency ω, and σk(H(jw)) can be thought of as the minimum
gain of the system at frequency ω.

If σi(H(jw)) » σk(H(jw)), then at the frequency ω, the system gain can be
large for some input directions and small for other input directions.

The singular value plot allows you to generalize to the MIMO case notions
such as “the command-to-tracking error transfer function is small” or “the
loop gain is large.” For example:

• If the system represents the command-to-tracking error for a
closed-loop system, then you would hope that σ1, and hence all
σ values, are small over the bandwidth of the system. This means
that the command-to-tracking error is small in all directions at these
frequencies.

• The singular value plot of a certain transfer matrix gives a lower bound
on the stability margin of the system.

σi H jw()(), i 1…k=

k min ninputs noutputs(,)()=

σ1 H() σ2 H() … σk H() 0≥ ≥ ≥ ≥

Chapter 3 System Evaluation

MATRIXx Xmath Robust Control Module 3-2 ni.com

Refer to [BoB91] in Appendix A, Bibliography.

Example 3-1 Creating a Singular Value Plot

1. Let a system H be a 2-input/2-output system:

tf=makepoly([1,2],"s")/...

polynomial([0,-2.334,-12],"s")

tf (a transfer function) =

 s + 2

 (s + 2.334)(s + 12)s

 System is continuous

H = [tf, 2*tf; tf*tf, tf+3];

[outputs,inputs]=size(H)

outputs (a scalar) = 2

inputs (a scalar) = 2

2. Now plot the singular values of the system between 0.01 and 100 Hz
using svplot():

svplot(H,{Fmin=0.01,Fmax=100})

The result is shown in Figure 3-1. For a discussion of svplot() syntax,
refer to the Xmath Help.

Chapter 3 System Evaluation

© National Instruments Corporation 3-3 MATRIXx Xmath Robust Control Module

Figure 3-1. Singular Value Plot

L Infinity Norm (linfnorm)
The L∞ norm of a stable transfer matrix H is defined as:

where is the maximum singular value and H(jω) is the transfer matrix
under consideration.

The L∞ norm of a stable transfer matrix is the maximum of the maximum
singular values over frequency. For example, the highest point of its
singular values plot. Observe that the L∞ norm can be calculated even if H is
not stable.

A simple interpretation of the L∞ norm of a stable system can be given as:

where u and y are the input and output of H, respectively. This means that
 is the root mean square (RMS) gain of the system: it is the largest

H ∞ sup σ H jω()()=

ω ℜ∈

σ

H ∞ maxRMS y()
RMS u()
--------------------=

H ∞

Chapter 3 System Evaluation

MATRIXx Xmath Robust Control Module 3-4 ni.com

factor by which the RMS value of a signal flowing through H can be
increased.

By comparison, the H2 norm is defined as:

This norm can be interpreted as the RMS value of the output when the input
is unit intensity white noise. It can be computed in Xmath using the rms()
function.

For discrete-time systems with a stable H,

where is the maximum singular value and H(ejω) is the transfer matrix
under consideration.

linfnorm()
[sigma, vOMEGA] = linfnorm(Sys, {tol,maxiter})

The linfnorm() function computes the L∞ norm of a dynamic system
using a quadratically convergent algorithm. The linfnorm() function
relies on eigenvalue calculations of a Hamiltonian matrix with twice as
many states as Sys and, consequently, may be unreliable for large systems.
A singular value plot created with svplot()can be used as an alternative
in these cases. Refer to the Singular Value Bode Plots section.

• The keyword tol controls the required relative accuracy. The default
is 0.01. maxiter is the maximum number of iterations. The default
is 15.

• If the maximum norm is found at ω = ∞, linfnorm() returns:

vOMEGA = Infinity

sigma = gain at infinity.

H 2
1
2π
------ σi H jω()()2

i 1=

k

∑
∞–

∞

∫= dw

H ∞
max

ω π π,–()∈
σ H e jω()()=

σ

Chapter 3 System Evaluation

© National Instruments Corporation 3-5 MATRIXx Xmath Robust Control Module

• If A has an imaginary eigenvalue at jω0, linfnorm() returns:

vOMEGA =

SIGMA = Infinity

where ω0 is one of the imaginary eigenvalues of A.

• Even if H is unstable, linfnorm() returns its maximum singular
value on the jω axis.

For discrete-time systems linfnorm() converts a discrete-time L∞
norm computation problem to a continuous-time problem using a Cayley
transformation. For example, it maps the unit circle conformally onto the
complex right half plane using a linear fractional transformation. The
linfnorm() function then calls itself to solve the continuous-time
problem, and finally converts the solution back to discrete-time.

Example 3-2 Example of linfnorm()

Sys=system([-0.2,-1;1,0],[1,0]',[0,1],0);

[sigma,omega]=linfnorm(Sys)

sigma (a scalar) = 5.07322

omega (a scalar) = 0.157081

The linfnorm() function will return the L∞ norm (sigma) of the transfer
matrix H(jω) described by Sys, and omega is the vector of frequencies
where it is achieved. linfnorm() computation can be checked by
plotting the singular values of H(jω) as a function of ω (Figure 3-2).

sv=svplot(Sys,{fmin=.01, fmax=1.0});

ω0

Chapter 3 System Evaluation

MATRIXx Xmath Robust Control Module 3-6 ni.com

Figure 3-2. Singular Values of H(jω) as a Function of ω

Note sv is returned in dBs. Check that sigma is within 0.01 (the default value of tol) of
10**(max(sv,{channels})/20).

[sigma,10^(max(sv,{channels})/20)]

ans (a row vector) = 5.07322 4.98731

The linfnorm() function also can be used on discrete-time systems.
Consider a state-space system with a sample rate of 10 Hz:

SysD=system([0.5,0.5;0.8,0.5],[0.8,0.5]',

[0,1],0,{dt=0.1})

[sigma,omega]=linfnorm(SysD)

sigma (a scalar) = 5.99267

omega (a scalar) = 0

Chapter 3 System Evaluation

© National Instruments Corporation 3-7 MATRIXx Xmath Robust Control Module

Singular Value Bode Plots of Subsystems
To evaluate the performance achieved by a given controller rapidly, it is
useful to check four basic maximum singular value plots—for example, the
transfer matrices from process and sensor noises to the error and actuator
signals.

perfplots()
SV = perfplots (Sys, nd, ne, { keywords })

The perfplots() function plots the maximum singular value of the
four transfer matrices of the system in the following figure.

In most applications, the perfplots() function is applied to a system of
the form shown in Figure 3-3, where P is the plant and K is a proposed
controller.

Figure 3-3. Typical System with Plant and Controller

Sys

d

n

e

u

Sys

d

n

e
u y

u

P

K

process
noise

sensor
noise

actuator

error

Chapter 3 System Evaluation

MATRIXx Xmath Robust Control Module 3-8 ni.com

The four transfer matrices are labeled e/d, e/n, u/d, and u/n in the final plot.
The plots in the top row, consisting of e/d and e/n, show the regulation or
tracking achieved by the controller. If both these quantities are small, then
the disturbance d and the sensor noise n will not make the error signal e
large.

The bottom row of plots, consisting of u/d and u/n, show the actuator effort
used by the controller. If these are both small, then the actuator effort u,
which results from the disturbance d and the sensor noise n will be small.

A classic trade-off in controller design boils down to a choice between
making the top row of a perfplot() small (good regulation/tracking)
and making the bottom row small (low actuator effort). For example, by
varying the design parameter ρ in the lqgltr() regulator design process,
the magnitude of the top two transfer matrices can be traded off against the
magnitude of the bottom two. Increasing ρ makes the top two magnitudes
smaller but makes the bottom two larger.

The columns of a perfplot() have a dual interpretation. The plots in the
left column, e/d and u/d, show how sensitive the system is to the process
noise or disturbance d. The plots in the right column, e/n and u/n, show how
sensitive the system is to the sensor noise n. Again, there is a trade-off
between making the magnitudes of the transfer matrices on the left small
(good disturbance rejection) and making the magnitudes of the transfer
matrices on the right small (low sensitivity to sensor noise). In the
lqgltr() estimator design, the parameter ρ controls the relative
magnitude of the left and right plots. Increasing ρ makes the left two
magnitudes smaller but makes the right two larger. Refer to Example 3-3.

Example 3-3 Example of perfplots()

Consider the simple closed-loop system shown in Figure 3-4.

Figure 3-4. Closed-Loop System

disturbance e1
s+

+

+–

K
n

noise

Chapter 3 System Evaluation

© National Instruments Corporation 3-9 MATRIXx Xmath Robust Control Module

The system matrix can be calculated using the afeedback() function for
different values of K. Consider two cases: K = 1 and K = 5.

P = 1/makepoly([1,0],"s")

P (a transfer function) =

 1

 --

 s

 System is continuous

K1= 1/makepoly(1,"s")

K1 (a transfer function) =

 1

 -

 1

 System is continuous

K5= 5/makepoly(1,"s");

Sys1 = afeedback(P,K1);

Sys5 = afeedback(P,K5);

The effect of the value of K on closed-loop performance can be investigated
using perfplots().

sv1 = perfplots(Sys1,1,1);

Overlap plots:

sv5 = perfplots(Sys5,1,1,{!graph});

for i = 1:4

 plot(sv5(1,i),

{graphnumber=i,line_style=2,keep})?

endfor

In Figure 3-5, you can see that over the bandwidth of 0.1 Hz, the controller
K = 5 has better regulation (e/d is smaller for K = 5 than for K = 1, with e/n
about the same for both cases) but uses slightly more actuator effort. Above
the bandwidth of 0.1 Hz, the e/n and u/n show that the K = 5 controller is
more sensitive to sensor noise. In classic terms, the K = 5 controller has a
higher bandwidth.

Chapter 3 System Evaluation

MATRIXx Xmath Robust Control Module 3-10 ni.com

Figure 3-5. Perfplots() for K = 1 and K = 5

clsys()
SysCL = clsys(Sys, SysC)

The clsys() function computes the state-space realization SysCL, of the
closed-loop system from w to z as shown in Figure 3-6.

Figure 3-6. Closed Loop System from w to z

Sys
w
u y

z

SysC

Chapter 3 System Evaluation

© National Instruments Corporation 3-11 MATRIXx Xmath Robust Control Module

Where SysC=system(Ac,Bc,Cc,Dc), Sys=system(A,B,C,D), and nz
is the dimension of z and nw is the dimension of w:

Given the above, SysCL is calculated as shown in Figure 3-7.

Figure 3-7. Calculation of the Closed Loop System (SysCL)

The closed-loop system is assumed to be well-posed—(I – DcDyu) must
be invertible). A well-posed closed-loop system assures that if two given
systems, Sys and SysC, are proper (only proper transfer functions can be
represented in state space), then the resulting closed-loop system, SysCL,
also is proper and therefore realizable in state space.

Figure 3-8 is an example of an ill-posed feedback system, where the
closed-loop transfer function is s+1, which cannot be represented as
a state-space system.

B is
Bw

Bu

C is Cz,Cy D is Dzw Dzu

Dyw Dyu

nz nwnw

nz

ACL
A+Bu I DcDyu–() 1– DcCy Bu I DcDyu–() 1– Cc

BcCy BcDyu I DcDyu–() 1– DcCy+ Ac BcDyu I DcDyu–() 1– Cc+
=

BCL
Bw Bu I DcDyu–() 1– DcDyw+

BcDyw BcDyu I DcDyu–() 1– DcDyw+
=

DCL Dzw Dzu I DcDyu–() 1– DcDyw+=

CCL Cz Dzu I DcDyu–() 1– DcCy+ Dzu I DcDyu–() 1– Cc=

Chapter 3 System Evaluation

MATRIXx Xmath Robust Control Module 3-12 ni.com

Figure 3-8. Ill-Posed Feedback System

Example 3-4 Example of Closed-Loop System

a = 1;

b = [1,0,1];

c = b';

d = [0,0,0;0,0,1;0,1,0];

Sys = SYSTEM(a,b,c,d);

SysC = SYSTEM(-40,2.7,-40,0);

SysCL = clsys(Sys,SysC)

SysCL (a state space system) =

 A

 1 -40

 2.7 -40

 B

 1 0

 0 2.7

 C

 1 0

 0 -40

 D

 0 0

 0 0

 X0

 0

 0

 System is continuous

1
s+ +

+ 1

© National Instruments Corporation 4-1 MATRIXx Xmath Robust Control Module

4
Controller Synthesis

This chapter discusses synthesis tools in two categories, H∞ and H2. This
chapter does not explain all of the theory of H∞, LQG/LTR, and frequency
shaped LQG design techniques. The general problem setup is explained
together with known limitations.

H-Infinity Control Synthesis

Problem Definition
The H∞ control synthesis function hinfcontr() finds a stabilizing
multivariable controller K for the plant P, as shown in Figure 4-1.

In the closed-loop system with plant P and controller K, all frequencies ω,

(4-1)

where Hew is the closed-loop transfer matrix from w to e and γ is some
specified limit. Equation 4-1 can be expressed in terms of the H∞ norm as:

Figure 4-1. Closed-Loop System with Plant P and Controller K

The function hinfcontr() is based on the 2-Riccati state space
solutions presented in [GD88,DGKF89]. You can examine these references
for theoretical descriptions.

σmax Hew jω()() γ≤

Hew ∞ γ≤

P
w u y

e

K

Hew

Chapter 4 Controller Synthesis

MATRIXx Xmath Robust Control Module 4-2 ni.com

The function hinfcontr() can be used to find an optimal H∞ controller
K that is arbitrarily close to solving:

(4-2)

The hinfcontr() function description in the hinfcontr() section
describes how the optimum can be found manually by decreasing γ until
an error condition occurs, or conversely by increasing γ until the error
condition is fixed.

The particular restrictions, required by the 2-Riccati solutions and
summarized in the Restrictions on the Extended Plant section are
those imposed in [GD88,DGKF89].

Extended Transfer Matrix
Referring to Figure 4-1, plant P specifies two groupings of vector inputs
and outputs. Such systems or transfer matrices are referred to as extended
transfer matrices or systems. To enter these in Xmath requires a
modification of your existing system representation. The standard system
has the form y = G(s)u and can be described either in state-space form:

or as a transfer matrix:

G(s) can be described in Xmath using the state-space system object:

G = system(A,B,C,D)

There is, however, insufficient information in this form to distinguish
the input/output groupings in the extended system P in Figure 4-1.
The state-space form of P is:

K

min Hew ∞ γ≤ γopt=

x' Ax Bu+=

y Ax Du+=

G s() D C sI A–() 1– B+=

x· Ax B1w B2u+ +=

e C1x D11w D12u+ +=

y C2x D21w D22u+ +=

Chapter 4 Controller Synthesis

© National Instruments Corporation 4-3 MATRIXx Xmath Robust Control Module

Equivalently, as a transfer matrix:

To enter the extended system, you must know the sizes of e and w shown
in Figure 4-1. The extended plant P can be constructed using the Xmath
interconnection functions, as shown in Example 4-1.

Building the Plant Model
The general form of the plant P is shown in Figure 4-2.

Figure 4-2. Construction of Plant P

The plant consists of three transfer matrices: Win and Wout, referred to as
weights, and G which can be interpreted as the system dynamics. Both P
and G distinguish inputs and outputs into two groups of variables.

The input/output variables are organized as follows:

• actuator/sensor variables

u—vector of actuator (control) signals

y—vector of sensor (measured) and other accessible signals

• exogenous inputs

v—vector of commands and disturbance

w—vector of “normalized” commands and disturbances

• performance outputs

z—vector of critical performance signals (regulated variables)

e—vector of “normalized” critical performance signals

P s() D11 D12

D21 D22

C1
C2

sI A–() 1– B1 B2[]+=

w
v z

e

u y

Plant P

G

Win Wout

Chapter 4 Controller Synthesis

MATRIXx Xmath Robust Control Module 4-4 ni.com

The transfer matrix G can be viewed as a model of the underlying system
dynamics with v and u as generalized forces that produce effects in the
performance signals z and measured signals y.

The weight Win is used to model the exogenous input v by v = Winw.

Similarly, the critical performance variables in the vector z are weighted to
form the normal critical variables e = Woutz.

In general, the input weight Win can be viewed as a dynamic model of the
exogenous inputs and the output weight Wout as the inverse of the desired
performance. As an illustration, consider the plant configuration in
Figure 4-3.

Figure 4-3. Typical Plant Configuration

The exogenous input vectors d and n represent disturbances and sensor
noise, respectively. These are generated by passing normalized
unpredictable signals, ωdist and ωnoise, through stable transfer matrices,
Wdist and Wnoise, respectively. The critical performance variables are some
regulated variables yreg, as well as the actuator commands u. These are
weighed by the transfer matrices Wreg and Wact to form the normalized error
variables ereg and eact. The sensed variables ysens are contaminated by
additive noise n to form the measured signal y. The transfer matrix Gdyn
represents the underlying system dynamics. Observe that the transfer
matrix G, as defined in [BBK88], consists of Gdyn with some special
output/input connections among the variables n and u as depicted in
Figure 4-3. This is in the form of the familiar LQG setup, except that

w
d

n

yreg

ysens

u

e

u y

P

Wdist

wdist

Win

Wreg

Wout

w e
Wnoise

wnoise

ereg

eact

Wact
Gdyn

G

Chapter 4 Controller Synthesis

© National Instruments Corporation 4-5 MATRIXx Xmath Robust Control Module

here the weighting matrices are transfer matrices, whereas in the LQG
setup they are constants.

A description of the plant in Figure 4-3 is as follows:

• Dynamical system Gdyn:

• Measured variables y = ysens + n:

• Input weight Win:

• Output weight Wout:

Weight Selection
In the standard LQG formulation, the weighting functions (Wdist, Wnoise,
Wreg, and Wact) are all constant matrices. In fact, if Qreg and Qact are positive
definite matrices in the LQ cost, for example,

then the following apply:

Similarly, if Rproc and Rsens are positive definite matrices corresponding to
the process and measurement noise intensities, then the following apply:

x· Ax Bdistd Bactu+ +=

yreg Cregx=

ysens Csensx=

d
n

Wdist 0
0 Wnoise

wdist

wnoise

Win
wdist

wnoise

= =

ereg

eact

Wreg 0
0 Wact

yreg

u
Win

yreg

u
= =

J 1
2
--- x'Qregx u'Qactu+

0

∞

∫⎝ ⎠
⎜ ⎟
⎛ ⎞

dt=

Wreg Qreg
1 2/= Wact Qact

1 2/=

Wdist Qproc
1 2/= Wnoise Qsens

1 2/=

Chapter 4 Controller Synthesis

MATRIXx Xmath Robust Control Module 4-6 ni.com

Selecting these weights has much the same effect here. Specifically, let Hzv
be the closed-loop transfer matrix (with u = Kγ) from inputs:

to outputs:

Thus,

Suppose that the controller u = Ky approximates Equation 4-2. Thus,

In many cases, this means that the maximum singular value of the
frequency response matrix (Wout HzvWin)(jω) is constant over all
frequencies. That is,

An interpretation is that the weighting filters Win and Wout determine the
shape of the closed-loop frequency response Hzw(jω), and γopt determines
the peak value. This observation helps motivate the selection of the weights
so as to shape the closed-loop frequency response matrix Hzw(jω).
Observe, however, that the elements of the frequency response matrix,
(WoutHzvWin)(jω), need not be constant. Instead, the maximum singular
value of at least one of the four subblocks is within 3 dB of γopt. For all ω,

v d
n

=

z yreg

u
=

Hzv
Hyregd Hyregn

Hud Hun

=

Wout HzvWin ∞ γopt≈

σmax
WregHyregdWdist WregHyregnWnoise

WactHudWdist WactHjnWnoise

jw()
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

γopt≈

M ω() σmax Wout HzvWin() jω()[] 2M ω()≤ ≤

Chapter 4 Controller Synthesis

© National Instruments Corporation 4-7 MATRIXx Xmath Robust Control Module

where

and

The weights also can be viewed as “design knobs” (for example,
[ONR84]). In this view, the weights are not directly related to specific
disturbance or performance models but rather are used as a vehicle to obtain
a closed-loop transfer matrix, Hzv, from v to z with desired properties. For
every selection of weights Win and Wout, the closed-loop system has the
following property:

But Hzv has other properties, both good and bad. To some extent, these all
can be affected by varying the weights. An effective way to provide a rapid
evaluation of performance is with the function perfplots(), as
described in the perfplots() section of Chapter 3, System Evaluation. With
a few trial and error adjustments of the weights, perfplots() will give
a good indication of their effect on performance.

Restrictions on the Extended Plant
Not all choices of weights will result in an extended plant P = WoutGWin
that will solve Equation 4-1. The following conditions, established in
references [GD88,DGKF89], if satisfied, will result in a solution. If any
are not satisfied, an error condition occurs.

The conditions are:

• (A, B2, C2) can be stabilized and detected

• rank(D12) = NU (number of inputs)

• rank(D21) = NY (number of outputs)

M ω() max m11 u(),m12 u()m21 u()m22 u(){ }=

m11 σmax WregHyregdWdist[]=

m12 σmax WregHyregnWnoise[]=

m21 σmax WactHudWdist[]=

m22 σmax WactHunWnoise[]=

WinHzvWout ∞ γ≤

Chapter 4 Controller Synthesis

MATRIXx Xmath Robust Control Module 4-8 ni.com

• For all ω ≥ 0,

•

Condition 1 is a standard condition to ensure the existence of a stabilizing
controller. Condition 2 ensures that the control signal u is contained in the
normalized error vector e (refer to Figure 4-3). Conversely, condition 3
ensures that some exogenous input (disturbance or noise) affects the
measured signals (refer to Figure 4-3). Conditions 4 and 5 ensure certain
minimal realizations of subblocks of the extended plant ([GD88]).

hinfcontr()
[SysC,Syszw]=hinfcontr(SysAug,gamma,nw,nz,{method})

The hinfcontr() function designs an H∞ controller for an augmented
plant. The augmented plant should satisfy the five restrictions in the
Restrictions on the Extended Plant section. The hinfcontr() function
tests for these restrictions and returns an error if they are violated.

Assuming the restrictions are not violated, a controller satisfying
 will exist if certain low-level conditions also hold. These

involve conditions for the solution of the underlying Riccati equations
and conditions for some other constraints. The details can be found in
[GD88,DGKF89] and are beyond the scope of this manual. If the low-level
conditions are violated, an error statement is displayed:

hinfcontr –>No stabilizing controller meets the spec!

Adjust gamma and try again!

When this occurs it means that the original gamma is too small and a
larger gamma (for example, a looser spec) is required to eliminate the
error condition. If gamma is too small, or any other necessary condition
is not met, the hinfcontr() function returns a zero controller and the
closed-loop system is equal to the open-loop system:

SysC = system([], [], [], 0),

Syszw = system(A, B1, C1, D11)

rank A jωI– B2
C1 D12

NS NU+=

rank A jωI– B1
C2 D21

NS NY+=

Hew ∞ γ≤

Chapter 4 Controller Synthesis

© National Instruments Corporation 4-9 MATRIXx Xmath Robust Control Module

If no error message occurs, then is guaranteed. However,
this does not preclude the possibility that either or that

.

For the former case, there are two checks:

• Use the linfnorm() function to compute .

• Compute the graph versus ω.

If by about 6 dB or more, then you can decrease gamma and try
again.

When gamma is very large, the specification (Equation 4-1) is easily
met. In this case, the hinfcontr() function returns a controller that
approximately minimizes the H2 norm of Hew while satisfying
Equation 4-2. Gamma can be interpreted as a “knob” that smoothly
transforms the H2 optimal (LQG) controller, (with gamma large), to a
H∞ optimal controller (with).

Similarly, for a large gamma, the controller has good RMS performance
with the noise spectra determined by the weights Wdist and Wnoise. For a
small gamma, the controller has good worst-case performance for noise
spectra that lay below the weights Wdist and Wnoise.

Example 4-1 Example of hinfcontr()

Referring to Figure 4-2, suppose G has the state space description,

where:

1. The extended system matrix for G is:

A = 1;

B1 = [1,0]; B2 = 1; B = [B1,B2];

C1 = [1;0]; C2 = 1; C = [C1;C2];

D11 = zeros(2,2); D12 = [0;1]; D21 = [0,1]; D22 = 0;

D = [D11,D12; D21,D22];

G = system(A,B,C,D);

nw = 2; nz = 2;

Hew ∞ γ≤
Hew ∞ γ«

γopt Hew ∞«

Hew ∞

σmax Hew jω()[]

Hew ∞ γ«

gamma γopt≈

x· x d+= u+

y x n+=

z x
u

= v d
n

=

Chapter 4 Controller Synthesis

MATRIXx Xmath Robust Control Module 4-10 ni.com

Suppose the input/output weights are as follows:

2. Create the four weights:

Wdist = 1/makepoly([1,1],"s")

Wdist (a transfer function) =

 1

 s + 1

Wnoise = 0.1;

Wreg=1/makepoly(1,"s");

Wact = 0.1;

3. Combine the weights in Win and Wout (refer to Figure 4-4):

Win = [Wdist,0,0;0,Wnoise,0;0,0,1];

Wout=[Wreg,0,0;0,Wact,0;0,0,1];

The resulting system, P can be obtained by putting in series the plant
G and the two weights:

P = Wout*G*Win;

Before using the hinfcontr() function, you must decide on an
initial guess for gamma.

Figure 4-4. Plant and Weights for hinfcontr()

Wout
1 0
0 0.1

=Win

1
s 1+
----------- 0

0 0.1
=

u
d

y1
s + 1

Win

1

Wout

n
u y

0.1 0.1

u
u y

1 1

G

Chapter 4 Controller Synthesis

© National Instruments Corporation 4-11 MATRIXx Xmath Robust Control Module

4. For this example, you will start with gamma=1 as the initial guess and
enter:

[K,Hew] = hinfcontr(P,1,2,2);

No error messages are reported. This means that a stabilizing
controller has been found such that Equation 4-1 holds. That is,

.

The actual H∞ norm is found from:

normHew=linfnorm(Hew)

normHew (a scalar) = 0.211984

The result is that on this first iteration:

gamma = 1 Æ normHew = 0.212

Continuing to iterate for the optimal gamma:

[K,Hew] = hinfcontr(P,.2,2,2);

normHew=linfnorm(Hew)

normHew (a scalar) = 0.173218

[K,Hew] = hinfcontr(P,.15,2,2);

normHew=linfnorm(Hew)

normHew (a scalar) = 0.147418

[K,Hew] = hinfcontr(P,.13,2,2);

normHew=linfnorm(Hew)

normHew (a scalar) = 0.13103

[K,Hew] = hinfcontr(P,.12,2,2);

normHew=linfnorm(Hew)

normHew (a scalar) = 2.02252

hinfcontr --> No stabilizing controller meets the

spec.!!

Adjust gamma and try again

The iterations establish that γopt lies between 0.12 and 0.13. Figure 4-5
shows the output of the perfplots function on the closed-loop
system Hew for γ = 0.13.

[K,Hew] = hinfcontr(P,.13,2,2);

normHew = linfnorm(Hew, {tol=1e-3})

normHew (a scalar) = 0.129863

svHew = perfplots(Hew,1,1,{Fmin=0.01,Fmax=100});

Hew ∞ 1≤

Chapter 4 Controller Synthesis

MATRIXx Xmath Robust Control Module 4-12 ni.com

Figure 4-5. Perfplots for Hew

It also is useful to perform perfplots() on the unweighted
closed-loop system, Hzv, which in this case is the closed-loop transfer
matrix from (d,n) into (x,u).

The following function calls produce Figure 4-6:

Hzv=clsys(G,K);

Hzv=perfplots(Hzv,1,1,{vF=domain(svHew)});

Chapter 4 Controller Synthesis

© National Instruments Corporation 4-13 MATRIXx Xmath Robust Control Module

Figure 4-6. Perfplots for Hzv

singriccati()
[P, solstat] = singriccati(A,Q,R {method})

The singriccati() function solves the Indefinite Algebraic Riccati
Equation (ARE):

The ARE is solved by decomposing the Hamiltonian:

The required decomposition of the Hamiltonian can be achieved using
method="eig" or method="schur". The Schur decomposition is
slower, but might handle some ill-conditioned problems. After solving the
ARE, singriccati() calculates the residue (ATP + PA – PRP + Q).
A warning is displayed if the residue is large. For an example of this
function, refer to the Xmath Help.

A′P PA PRP– Q+ + 0=

A R–

Q– A′–

Chapter 4 Controller Synthesis

MATRIXx Xmath Robust Control Module 4-14 ni.com

Linear-Quadratic-Gaussian Control Synthesis
The H2 Linear-Quadratic-Gaussian (LQG) control design methods are
based on minimizing a quadratic function of state variables and control
inputs. Conventionally, the problem is specified in the time domain.
By converting the LQG performance index into the frequency domain,
it becomes obvious that the conventional LQG places equal penalty on
states and control inputs at all frequencies. It is possible to realize
significant improvement in robustness and performance by making the
penalty weighting matrices functions of frequency.

LQG Frequency Shaping
Bryson’s rule [BH69] can be extended to initially select a frequency
shaping for a particular problem. For the control design problem, the
frequency-shaped weighting matrices should be large at frequencies where
control inputs are less desirable. For example, a large weighting on control
signals at high frequency would produce less control activity at those
frequencies, leading to a closed-loop system with lower bandwidth. Similar
ideas apply to selection of state weighting in control design and the
development of robust state estimators.

Three functions are available to solve the problem of frequency-shaped cost
functionals:

• fsregu()—frequency-shaped regulator

• fsesti()—frequency-shaped estimator

• fslqgcomp()—frequency-shaped linear-quadratic-gaussian
compensator

fsregu()
[SysC, SysCC, vEV] = fsregu(SysA, ns, RXXA, RUUA, {RXUA})

The fsregu() function computes a frequency-shaped control law.
It assumes you start with:

and

x· Ax Bu+=

J 1
2
--- x* jω()Q jω()x jω() u* jω()R jω()u jω()+[] ωd

∞–

∞

∫=

Chapter 4 Controller Synthesis

© National Instruments Corporation 4-15 MATRIXx Xmath Robust Control Module

This expression can be converted into the following form [Gu80]:

If R(jω) is not a function of frequency, then C12 = 0 and D = I.

Note The system has a new input v and the old input u is now the output of the system.
This structure is only used for computational convenience.

Define:

Thus,

After the system is put in this form, you are ready to use the fsregu()
function. For more information on the fsregu() syntax, refer to the
Xmath Help.

x·

x· ′
A11 A12
A21 A22

x
x′

B1
B2

v+=

⎧ ⎪ ⎨ ⎪ ⎩ ⎧ ⎨ ⎩

u 0 C12
x
x′

D v+=

⎧ ⎪ ⎨ ⎪ ⎩ {

Ac Bc

Cc Dc

xA
x
x'

=

x·A AcxA Bcv+=

u CcxA Dcv+=

J 1
2
--- xA

*RxxA
xA v*RuuA

v 2xA
*+ RxuA

v+()dω

∞

∫=

Chapter 4 Controller Synthesis

MATRIXx Xmath Robust Control Module 4-16 ni.com

fsesti()
[SysF, vEV] = fsesti(SysA, ns, QWWA, QVVA, {QWVA})

The fsesti() function computes a frequency-shaped state estimator.
The estimation problem is stated as follows:

The frequency-shaped filter design problem is to minimize,

which can be written as:

or it can be written as:

For more information on the fsesti() syntax, refer to the Xmath Help.

x· Ax Bu w+ +=

y Cx Du v+ +=

J 1
2
--- w*Qww jω()w v*Qvv jω()v+()

∞–

∞

∫= dω

x·A AexA= Beu wA+ +

J 1
2
--- wA

*QwwA
wA

∞–

∞

∫= vA
*QvvA

vA 2wA
*QwvA

v)dω+ +

xA

x·

x· ′
A11 A12
A21 A22

x
x′

B
0

u wA+ +=

⎧ ⎪ ⎨ ⎪ ⎩ ⎧ ⎨ ⎩

u C1 C2⎝ ⎠
⎛ ⎞ x·

x· ′
Deu vA++=

⎧ ⎪ ⎨ ⎪ ⎩

Ae Be

Ce

Chapter 4 Controller Synthesis

© National Instruments Corporation 4-17 MATRIXx Xmath Robust Control Module

fslqgcomp()
[SysCC, vEV] = fslqgcomp(SysF, SysC)

The fslqgcomp() function combines filter and control law to compute a
controller from a control law and an estimator. For more information on the
fslqgcomp() syntax, refer to the Xmath Help.

Frequency-Shaped Control Design Commands
This extended example uses the previously discussed functions to
demonstrate frequency-shaped control design techniques. A four-state,
poorly damped system is studied to demonstrate how robustness can be
attained using frequency shaping. The control law and filter are designed
on a reduced second order system with and without frequency shaping.

1. Create a full-order system:

a=[0,1,0,0;-1,-.01,0,0;0,0,0,1;0,0,-25,-.05];

b=[0,1,0,1]';

c=[0,1,0,-1]; d=0;

Sys=system(a,b,c,d);

2. Calculate open-loop eigenvalues:

eig(a)

ans (a column vector) =

 -0.005 + 0.999987 j

 -0.005 - 0.999987 j

 -0.025 + 4.99994 j

 -0.025 - 4.99994 j

3. Create a reduced order system by selecting only the first mode:

ar=a(1:2,1:2);br=b(1:2);cr=c(1:2);

Sysr=system(ar,br,cr,d);

4. Design an LQG compensator for the reduced-order system, without
using frequency shaping:

qxx=diagonal([0,1]);quu=1;

kr=regu(Sysr,qxx,quu); # Linear-Quadratic-Regulator

ke=esti(Sysr,qxx,quu); # Linear-Quadratic-Estimator

Sysc=lqgcomp(Sysr,kr,ke); # LQG Compensator

Syscl=feedback(Sysr,Sysc); # Reduced-order closed-loop

poles(Syscl)

ans (a column vector) =

 -0.500025 + 0.866011 j

 -0.500025 - 0.866011 j

Chapter 4 Controller Synthesis

MATRIXx Xmath Robust Control Module 4-18 ni.com

 -0.500025 + 0.866011 j

 -0.500025 - 0.866011 j

5. Try the LQG compensator with the full-order system:

[Syscl_fo]=feedback(Sys,Sysc);

poles(Syscl_fo)

ans (a column vector) =

 -0.401519 + 0.864869 j

 -0.401519 - 0.864869 j

 -0.638796 + 0.855861 j

 -0.638796 - 0.855861 j

 0.0152647 + 4.90994 j

 0.0152647 - 4.90994 j

6. Find a stabilizing reduced order controller using frequency shaping.

To stabilize this system, try a frequency-shaped control-law, where the
weighting on the control signal will be 1 + (ω)4.

First, form an augmented system, defining two additional states,
μ and

The augmented system will be:

(4-3)

(4-4)

Note The augmented system has two extra states implementing the frequency shaping on
the control system.

aa=[ar,br,[0;0];0,0,0,1;0,0,0,0];

bb=[0,0,0,1]';cc=[0,0,1,0];dd=0;

Sysa=system(aa,bb,cc,dd)

Sysa (a state space system) =

 A

 0 1 0 0

 -1 -0.01 1 0

u· .

d
dt

xr

u
u·

Ar Br
0
0

0 0 0 1
0 0 0 0

xr

u
u·

0
0
0
1

v+ AaxA Bav+= =

u 0 0 1 0
xr

u
u·

0()v+ CaxA Dav+= =

Chapter 4 Controller Synthesis

© National Instruments Corporation 4-19 MATRIXx Xmath Robust Control Module

 0 0 0 1

 0 0 0 0

 B

 0

 0

 0

 1

 C

 0 0 1 0

 D

 0

 X0

 0

 0

 0

 0

 System is continuous

7. Frequency-weight the control signal.

Transfer the weight on U from RUU to the third diagonal entry in RXXA.

Note In Equation 4-3, u is the third state of the augmented system. RUU weighs the new
frequency-shaped control signal v.

Design a frequency-shaped regulator:

rxxa=diagonal([0,1,1,0]);ruua=1;

[Sysfs_sr,,fs_evr]=fsregu(Sysa,2,rxxa,ruua)

Sysfs_sr (a state space system) =

 A

 0 1

 -1.95171 -1.97571

 B

 0 0

 0.951712 -0.228069

 C

 1 0

 D

 0 0

 X0

 0

 0

Chapter 4 Controller Synthesis

MATRIXx Xmath Robust Control Module 4-20 ni.com

 System is continuous

fs_evr (a column vector) =

 -0.645263 + 0.587929 j

 -0.645263 - 0.587929 j

 -0.347592 + 1.09155 j

 -0.347592 - 1.09155 j

8. Calculate the frequency-shaped estimator:

Sysaf=system(ar,br,cr,0);qwwa=qxx;qvva=quu;

[Sysfs_se,fs_eve]=fsesti(Sysaf,2,qwwa,qvva)

Sysfs_se (a state space system) =

 A

 0 1

 -1 -1.00005

 B

 5.52357e-17 0

 0.99005 1

 C

 1 0

 0 1

 D

 0 0

 0 0

 X0

 0

 0

 System is continuous

fs_eve (a column vector) =

 -0.500025 + 0.866011 j

 -0.500025 - 0.866011 j

The compensator should be structured as shown in Figure 4-7.

Figure 4-7. Frequency-Shaped Compensator

The fslqgcomp() function can be used to develop the compensator.

y
xA u

Sysfs_se Sysfs_se

Chapter 4 Controller Synthesis

© National Instruments Corporation 4-21 MATRIXx Xmath Robust Control Module

9. Design the LQG compensator.

[Sysfs_sc,fs_evc]=fslqgcomp(Sysfs_se,Sysfs_sr)

Sysfs_sc (a state space system) =

 A

 0 1 0 0

 -1 -1.00005 1 0

 0 0 0 1

 0.951712 -0.228069 -1.95171 -1.97571

 B

 5.52357e-17

 0.99005

 0

 0

 C

 0 0 1 0

 D

 0

 X0

 0

 0

 0

 0

 System is continuous

fs_evc (a column vector) =

 -0.373302

 -1.17564

 -0.713411 + 1.33028 j

 -0.713411 - 1.33028 j

Enforce negative feedback:

Sysfs_sc = -Sysfs_sc;

Chapter 4 Controller Synthesis

MATRIXx Xmath Robust Control Module 4-22 ni.com

10. Compute the closed-loop system for the reduced order plant and the
frequency-shaped compensator:

[Sysfs_scl]=feedback(Sysr,Sysfs_sc);

poles(Sysfs_scl)

ans (a column vector) =

 -0.645263 + 0.587929 j

 -0.645263 - 0.587929 j

 -0.500025 + 0.866011 j

 -0.500025 - 0.866011 j

 -0.347592 + 1.09155 j

 -0.347592 - 1.09155 j

11. Compute the closed-loop system for the full-order plant and the
frequency-shaped compensator.

Sysfs_scl_fo = feedback(Sys,Sysfs_sc);

poles(Sysfs_scl_fo)

ans (a column vector) =

 -0.690216 + 0.522898 j

 -0.690216 - 0.522898 j

 -0.419783 + 0.892632 j

 -0.419783 - 0.892632 j

 -0.381722 + 1.10668 j

 -0.381722 - 1.10668 j

 -0.0261589 + 5.00027 j

 -0.0261589 - 5.00027 j

The full-order closed-loop system is stable. The open-loop eigenvalues
of the unmodelled mode have not moved much, which is a sign of good
robustness. The eigenvalue of the unmodelled mode changed from
–.0250 ± 5j to –0.0262 ± 5j.

Loop Transfer Recovery (lqgltr)
Loop transfer recovery (LTR) is fully described in references [KS72,
DoS79,DoS81,SA88]. The properties of the recovery pertain to the LQG
feedback system as shown in Figure 4-8.

The parameter ρ (rho) can be manipulated by the user to obtain loop
transfer recovery through the regulator (lqrltr) or the estimator
(lqeltr).

Chapter 4 Controller Synthesis

© National Instruments Corporation 4-23 MATRIXx Xmath Robust Control Module

Figure 4-8. LQG Feedback System for Loop Transfer Recovery

lqgltr()
[SysC,EV,Kr] = lqgltr(Sys,Wx,Wy,K,rho,{keywords})

The lqgltr() function designs an estimator or regulator which recovers
loop transfer robustness through the design parameter ρ (rho). For a
discussion of the syntax and a full listing of keywords, refer to the Xmath
Help.

The keyword recover specifies whether the recovery should be achieved
through regulator or estimator design.

If the keyword is set to recover="regulator", the loop-transfer is
recovered by designing a regulator with the following model:

and the objective function:

with:

x = Ax + Bu
y = Cx x

y

G(s)

K(s)

Plant

Estimator

x

x = Ax + Bu + KEε
ε = y – Cx

KR

u

x· Ax w+=

y Cx v+=

J 1
2
--- x'Qx u'Ru+() td

0

∞

∫=

Q Rxx ρC'C+=

R Ruu=

Chapter 4 Controller Synthesis

MATRIXx Xmath Robust Control Module 4-24 ni.com

Then ρ is increased so that pointwise in s:

Regulator recovery is only guaranteed if G(s) is minimum-phase and there
are at least as many control signals u as measurements y.

If recover="estimator", the loop-transfer is recovered by designing an
estimator with the following model:

where w and v have noise intensities:

Then ρ is increased so that pointwise in s:

Recovery is only guaranteed if G(s) is minimum-phase and there are at least
as many measurements y as there are control signals u.

If graph is on (default) the singular value loop transfer response is plotted.
The solid line represents the original loop transfer, and the dashed line
represents the loop transfer after recovery.

K s()G s() KR sI A–() 1–→ B

x· Ax w+=

y Cx v+=

W Qxx ρBB'+=

V Qyy=

G s()K s() C sI A–() 1–→ KE

© National Instruments Corporation A-1 MATRIXx Xmath Robust Control Module

A
Bibliography

[BBK88] S. Boyd, V. Balakrishnan, and P. Kabamba. “A bisection method for computing the
L∞ norm of a transfer matrix and related problems.” Mathematical Control Signals,
Systems Vol. 2, No. 3, pp 207–219, 1989.

[BeP79] A. Berman and R.J. Plemmons. “Nonnegative Matrices in the Mathematical
Sciences.” Computer Science and Applied Mathematics Series, Academic
Press, 1979.

[BoB90] S. Boyd and V. Balakrishnan. “A regularity result for the singular values of a transfer
matrix and a quadratically convergent algorithm for computing its L∞ norm.”
Systems Control Letters, Vol. 15, pp 1–7, 1990.

[BoB91] S. Boyd and C. Barratt. Linear Controller Design: Limits of Performance.
Prentice-Hall, 1991.

[BH69] A.E. Bryson and Y.C. Ho. Applied Optimal Control, p 149. Blaisdell
Publishing Co., 1969.

[DoS79] J.C. Doyle and G. Stein. “Robustness with Observers.” IEEE Transactions on
Automatic Control, August 1979.

[DoS81] J.C. Doyle and G. Stein. “Multivariable Feedback Design: Concepts for a
Classical/Modern Synthesis.” IEEE Transactions on Automatic Control,
Vol. AC-26, pp 4–16, February 1981.

[Doy82] J.C. Doyle. “Analysis of Feedback Systems with Structured Uncertainties.”
IEEE Proceedings, November 1982.

[DWS82] J.C. Doyle, J.E. Wall, and G. Stein. “Performance and Robustness Analysis for
Structure Uncertainties.” Proceedings IEEE Conference on Decision and Control,
pp 629–636, 1982.

Appendix A Bibliography

MATRIXx Xmath Robust Control Module A-2 ni.com

[FaT88] M.K. Fan and A.L. Tits. “m-form Numerical Range and the Computation of the
Structured Singular Value.” IEEE Transactions on Automatic Control, Vol. 33,
pp 284–289, March 1988.

[FaT86] M.K. Fan and A.L. Tits. “Characterization and Efficient Computation of the
Structured Singular Value.” IEEE Transactions on Automatic Control, Vol. AC-31,
pp 734–743, August 1986.

[Fr87] B. Francis. A Course in L∞ Control Theory. Springer-Verlag,
Berlin-New York, 1987.

[FPGM87] D.S. Flamm, S. Boyd, G. Stein, and S.K. Mitter. “Tutorial Workshop on L∞ Control
Theory.” pre-conference workshop, Proceedings 26th IEEE Conference on Decision
and Control, December 1988.

[GD88] K. Glover and J.C. Doyle. “State-space formulae for all stabilizing controllers that
satisfy an L∞ norm bound and relations to risk sensitivity.” Systems and Control
Letters, Vol. 11, pp 167–172, 1988.

[DGKF89] J.C. Doyle, K. Glover, P.K. Khargonekar, and B. Francis. ‘‘State-space solutions to
standard H2 and L∞ control problems.” IEEE Transactions on Automatic Control,
Vol. AC-34, No. 8, pp 831–847, August 1989.

[Gu80] N.K. Gupta. “Frequency Shaping of Cost Functionals: An extension of LQG Design
Methods.” AIAA Journal of Guidance and Control, Vol. 3, No. 6, December 1980.

[ONR84] ONR/Honeywell Workshop on Advances in Multivariable Control. Lecture Notes,
Minneapolis, MN, 1984.

[Osb60] E.E. Osborne. “On Preconditioning of Matrices.” JACM, 7:338–345, 1960.

[Saf82] M.G. Safonov. “Stability Margins of Diagonally Perturbed Multivariable Feedback
Systems.” IEEE Proceedings, 129-D:251–256, November 1982.

[SD83] M.G. Safonov and J.C. Doyle. “Optimal Scaling for Multivariable Stability Margin
Singular Value Computation.” Proceedings of MECO/EES 1983, Symposium, 1983.

[SD84] M.G. Safonov and J.C. Doyle. “Minimizing Conservativeness of Robust Singular
Values.” Multivariable Control, pp 197–207, S.G. Tzafestas, editor. D. Reidel
Publishing Company, 1984.

[SLH81] M.G. Safonov, A.J. Laub, and G.L. Hartmann. “Feedback Properties of
Multivariable Systems: The Role and Use of the Return Difference Matrix.”
IEEE Transactions on Automatic Control, Vol. AC-26, February 1981.

Appendix A Bibliography

© National Instruments Corporation A-3 MATRIXx Xmath Robust Control Module

[SA88] G. Stein and M. Athans. “The LQG/LTR Procedure for Multivariable Control
Design.” IEEE Transactions on Automatic Control, Vol. AC-32, No. 2, pp 105–114,
February 1987.

[Za81] G. Zames. “Feedback and optimal sensitivity: model reference transformations,
multiplicative semi-norms, and approximate inverses.” IEEE Transactions on
Automatic Control, Vol. AC-26, pp 301–320, 1981.

[KS72] H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. Wiley, 1972.

© National Instruments Corporation B-1 MATRIXx Xmath Robust Control Module

B
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

• Support—Online technical support resources at ni.com/support
include the following:

– Self-Help Resources—For answers and solutions, visit the
award-winning National Instruments Web site for software drivers
and updates, a searchable KnowledgeBase, product manuals,
step-by-step troubleshooting wizards, thousands of example
programs, tutorials, application notes, instrument drivers, and
so on.

– Free Technical Support—All registered users receive free Basic
Service, which includes access to hundreds of Application
Engineers worldwide in the NI Discussion Forums at
ni.com/forums. National Instruments Application Engineers
make sure every question receives an answer.

For information about other technical support options in your
area, visit ni.com/services or contact your local office at
ni.com/contact.

• Training and Certification—Visit ni.com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, National Instruments
Alliance Partner members can help. To learn more, call your local
NI office or visit ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation I-1 MATRIXx Xmath Robust Control Module

Index

A
Algebraic Riccati Equation (ARE), 4-13

C
clsys(), 3-10
conventions used in the manual, iv

D
diagnostic tools (NI resources), B-1
documentation

conventions used in the manual, iv
NI resources, B-1

drivers (NI resources), B-1

E
examples (NI resources), B-1
extended transfer matrices, 4-2

F
frequency-shaped

control law, 4-14
filter design, 4-16

fsesti(), 4-16
fslqgcomp(), 4-17
fsregu(), 4-14

H
H∞ control synthesis, 4-1

building the plant model, 4-3
extended transfer matrix, 4-2

problem definition, 4-1
restrictions on extended plant, 4-7
weight selection, 4-5

H2 control synthesis, 4-14
H2 norm, 3-4
help, technical support, B-1
hinfcontr(), 4-2, 4-8

I
instrument drivers (NI resources), B-1

K
KnowledgeBase, B-1

L
L∞ norm, 3-3
linfnorm(), 3-4
loop transfer recovery, 4-22
LQG frequency shaping, 4-14
lqgltr(), 4-23

M
MATRIXx Help, 1-3
modeling uncertain systems, 2-1

N
National Instruments support and services, B-1
NI support and services, B-1
nomenclature, 1-2
nominal closed-loop system, 2-2

creating, 2-4

Index

MATRIXx Xmath Robust Control Module I-2 ni.com

nominal transfer function, 2-8
norm

H2, 3-4
L∞, 3-3

O
optscale(), 2-17
osscale(), 2-16

P
perfplots(), 3-7
pfscale(), 2-16
programming examples (NI resources), B-1

R
reducibility, 2-17
robust stability, 2-3

S
scaled singular values, 2-11
scaling

Optimal (Boyd), 2-15
Osborne, 2-15
Perron-Frobenius, 2-15
ssv(), 2-15

singriccati(), 4-13
singular value Bode plots, 3-1
singular values, 2-11
smargin(), 2-4

software (NI resources), B-1
ssv(), 2-15
stability margin, 2-3, 2-10
structured nonparametric uncertainty, 2-1
structured singular value, 2-11
support, technical, B-1
system

feedback connection, 2-2
nominal closed-loop, 2-1

creating, 2-4
magnitude bounds, 2-2
stability margin, 2-3

T
technical support, B-1
training and certification (NI resources), B-1
transfer function

nominal, 2-8
perturbed, 2-8
uncertain, 2-2

troubleshooting (NI resources), B-1

W
wcbode(), 2-9
wcgain(), 2-19
Web resources, B-1
well-posed closed-loop system, 3-11
worst-case gain, 2-8
worst-case performance degradation, 2-8,

2-18

	Xmath Robust Control Module
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Conventions
	Contents
	Chapter 1 Introduction
	Using This Manual
	Document Organization
	Bibliographic References
	Commonly-Used Nomenclature
	Related Publications
	MATRIXx Help

	Overview
	Figure 1-1. RCM Function Structure

	Chapter 2 Robustness Analysis
	Modeling Uncertain Systems
	Figure 2-1. Model of an Uncertain System

	Stability Margin (smargin)
	smargin()
	Figure 2-2. Nominal Closed-Loop System
	Figure 2-3. SISO Tracking System with Three Uncertainties
	Figure 2-4. Bound for Sensor Uncertainty
	Figure 2-5. Stability Margin

	Worst-Case Performance Degradation (wcbode)
	wcbode()
	Figure 2-6. Performance Degradation of the SISO Tracking System

	Advanced Topics
	Stability Margin
	Stability Margin and Structured Singular Values (μ)
	Stability Margin Bounds Using Singular Values
	Figure 2-7. pfscale() versus svd Stability Margins
	Approximation with Scaled Singular Values
	Figure 2-8. Results of Scaling Algorithm Options

	ssv()
	osscale()
	pfscale()
	optscale()

	Reducibility
	Figure 2-9. Non-Interacting Uncertain Transfer Functions
	Figure 2-10. Reduction to Separate Systems

	Worst-Case Performance Degradation (wcgain)
	Conversion to a Stability Margin Problem
	wcgain()

	Chapter 3 System Evaluation
	Singular Value Bode Plots
	Figure 3-1. Singular Value Plot

	L Infinity Norm (linfnorm)
	linfnorm()
	Figure 3-2. Singular Values of H(jw) as a Function of ω

	Singular Value Bode Plots of Subsystems
	perfplots()
	Figure 3-3. Typical System with Plant and Controller
	Figure 3-4. Closed-Loop System
	Figure 3-5. Perfplots() for K = 1 and K = 5

	clsys()
	Figure 3-6. Closed Loop System from w to z
	Figure 3-7. Calculation of the Closed Loop System (SysCL)
	Figure 3-8. Ill-Posed Feedback System

	Chapter 4 Controller Synthesis
	H-Infinity Control Synthesis
	Problem Definition
	Figure 4-1. Closed-Loop System with Plant P and Controller K

	Extended Transfer Matrix
	Building the Plant Model
	Figure 4-2. Construction of Plant P
	Figure 4-3. Typical Plant Configuration

	Weight Selection
	Restrictions on the Extended Plant
	hinfcontr()
	Figure 4-4. Plant and Weights for hinfcontr()
	Figure 4-5. Perfplots for Hew
	Figure 4-6. Perfplots for Hzv

	singriccati()

	Linear-Quadratic-Gaussian Control Synthesis
	LQG Frequency Shaping
	fsregu()
	fsesti()
	fslqgcomp()
	Frequency-Shaped Control Design Commands
	Figure 4-7. Frequency-Shaped Compensator

	Loop Transfer Recovery (lqgltr)
	Figure 4-8. LQG Feedback System for Loop Transfer Recovery
	lqgltr()

	Appendix A Bibliography
	Appendix B Technical Support and Professional Services
	Index
	A-N
	O-W

